
Adding external iterators to an existing Eiffel class library

Olivier ZENDRA, Dominique COLNET

E-mail: {zendra, colnet}@loria.fr
LORIA

UMR 7503
(INRIA - CNRS - University Henri Poincaré)

Campus Scientifique, BP 239,
54506 Vandœuvre-lès-Nancy Cedex

FRANCE

Abstract

This paper discusses common iteration schemes and highlights the interest of using ex-

plicit iterators. The advantages of external iterators are compared to those of internalized

iterators.

The integration of an iterator class hierarchy to an existing library without modifying the

latter is detailed. This integration brings an extra level of abstraction to the library, which

thus becomes more �exible, more adapted to certain design patterns and hence can be used

in a higher-level way. Such an integration is not only possible, but can even be done in an

optimized way, taking into account the speci�c structure of the collection traversed.

A slight extension of existing class libraries can also be implemented that does not cause

any compatibility problem and does not break existing code, but allows even further abstrac-

tion and makes it easier for the developer to use high-level, optimized, external iterators.

1 Introduction

Iterating over data structures and collections is unsurprisingly probably one of the most
basic and common tasks of a developer. As basic as it seems, this task is not always as
easy as it ought to be, especially when dealing with complex data collections and/or large
libraries. As a consequence, the notion of iterators has emerged and evolved, for example
in design patterns, in order to consider this technique — iteration — from a higher-level
point of view.

From time to time, a flurry of discussions happens in some newsgroup or mailing-list,
about the usefulness and/or efficiency of iterators, in general or in a specific implementation.
Indeed, as simple as this issue may first appear, it does not always seem to be understood
in all its aspects and implications. This paper is thus a report — which we intend to be
useful to all developers and especially to libraries implementors — on our work designing
and implementing external iterators for the pre-existing and already used library we provide
with SmallEiffel, The GNU Eiffel compiler1 [ZCC97, CZ99].

1http://SmallEiffel.loria.fr



This paper is organized as follows. Section 2 recalls the classical ways of iterating on
data structures and where the usefulness of iterators appears. Section 3 explains how
such iterators can be implemented and used without modifying exiting libraries. Section 4
focuses on a neat and optimized integration of iterators to existing libraries with only minor
modifications to the latter. Finally, section 5 presents a overview of related implementations
and section 6 concludes.

2 Classic iteration schemes without iterators

Without specific iterator mechanism, iterations on data structures may have different
coding schemes according to the type of the data structure to be traversed. For example,
an iteration on a string is different of an iteration on an array. Even more, when one has
to traverse a dictionary (or some kind of hash table), the iteration scheme becomes very
different. In order to expose more clearly the problem, let us first present different iteration
schemes. All the examples we present here use either standard Eiffel [Mey94a] classes or
data structures from the SmallEiffel library (SmallEiffel/lib_std).

This first example is about the Eiffel string class and is thus not SmallEiffel specific.
This classic iteration scheme is self-explanatory when one is aware that the first character
of an Eiffel string is at index 1 :

string_iteration(my_string: STRING) is
local

i: INTEGER; element: CHARACTER;
do

from i := 1; until i > my_string.count
loop

element := my_string.item(i);
-- Iteration body itself.
i := i + 1;

end;
end;

A second example deals with Eiffel arrays. Since the very first index of an array is not
always 1, the iteration scheme must rely on two functions which indicate the lower bound
and the upper bound. Here is an example to traverse an array of characters :

array_iteration(my_array: ARRAY[CHARACTER]) is
local

i: INTEGER; element: CHARACTER;
do

from i := my_array.lower; until i > my_array.upper
loop

element := my_array.item(i);
-- Iteration body itself.
i := i + 1;

end;
end;

The SmallEiffel library also provides a linked_list data structure. Such a linked data
structure is internally very different from an array. But fortunately from the client point
of view, a linked_list can be traversed exactly like an array :

linked_list_iteration(my_linked_list: LINKED_LIST[CHARACTER]) is



abstract
COLLECTION[E]

abstract
ARRAYED_COLLECTION[E]

abstract
LINKED_COLLECTION[E]

ARRAYED[E]

FIXED_ARRAYED[E]

LINKED_LIST[E]

TWO_WAY_LINKED_LIST[E]

B
inherits

from
 A

A

B

Figure 1. A part of the inheritance hierarchy from the SmallEiffel library.

local
i: INTEGER; element: CHARACTER;

do
from i := my_linked_list.lower; until i > my_linked_list.upper
loop

element := my_linked_list.item(i);
-- Iteration body itself.
i := i + 1;

end;
end;

A closer look at the inheritance hierarchy of the collection cluster (figure 1) shows
that the array2 class and the linked_list class have a common abstract interface (the
abstract, or deferred in the Eiffel terminology, collection class). As a consequence,
any subclass of collection can be traversed the very same way. One can thus write an
algorithm without knowing the concrete collection used :

collection_iteration(my_collection: COLLECTION[CHARACTER]) is
local

i: INTEGER; element: CHARACTER;
do

from i := my_collection.lower; until i > my_collection.upper
loop

element := my_collection.item(i);
-- Iteration body itself.
i := i + 1;

end;
end;

Let us now consider a more complex problem, illustrated with the dictionary class of the
SmallEiffel library, which is an implementation of associative memory. Unlike collections,
dictionary indexes are not only integers, but any kind of hashable type. For example,
one can use a dictionary[character,string] to associate an index of type string to
a value of type character. From the client point of view, it is important to be able to
traverse all the elements in the dictionary, although no conceptual ordering exists on its
elements. As an example, the dictionary class is used by the SmallEiffel compiler to store

2Unlike C arrays, Eiffel arrays are flexible. Thus, any possible operation on a linked_list can be
implemented on an array. Obviously, adding an element in the middle of an array is more costly than on
a linked_list



all the live routines of a class. At code generation time, the compiler has to produce code
for each routine, and thus needs to traverse dictionaries. More generally, in many real-life
applications, an associative memory data structure has to provide iteration facilities. As a
simple example, an iteration is necessary to display the whole content of a dictionary.

To fit within the collection iteration scheme, features lower, upper and item work
exactly the same way on a dictionary. The item function is used to access values and the
key function is provided to access the corresponding keys (or indexes). Here is an example
of a dictionary traversal using both values and keys :

dictionary_iteration(my_dictionary: DICTIONARY[CHARACTER,STRING]) is
local

i: INTEGER; element: CHARACTER; key: STRING;
do

from i := my_dictionary.lower; until i > my_dictionary.upper
loop

element := my_dictionary.item(i); -- To get the value.
key := my_dictionary.key(i); -- To get the key.
-- Iteration body itself.
i := i + 1;

end;
end;

Because a dictionary is not, strictly speaking, a kind of collection, there is not inher-
itance relationship between class dictionary and class collection. As a consequence,
even though the iteration scheme of a collection is exactly the same as the iteration
scheme to traverse the values of a dictionary, one can not share the traversal code. This
fact leads us to introduce an external iterator mechanism in our library.

3 Using and implementing external iterators in Eiffel

The use of the iterator pattern as described in [GHJV94] solves the concerns expressed
above. The key idea of this pattern (also known as cursor) is to take the responsibility for
access and traversal out of the data structure and put it into an iterator object. This way,
traversing the same way any data structure or some aggregate object is very straightforward.
Each iterator just has to keep track of its own traversal state and act exactly as a mediator
between the user of the iterator and the traversed container.

Furthermore, as we will see later, we have shown that the iterator pattern can be added
to the SmallEiffel library without any modification of the existing client code.

As described in [GHJV94], the abstract iterator class is very simple (see its complete
Eiffel source code in appendix A) and leads to a unique and general iteration scheme. As we
are in an Eiffel context, the generic argument of the iterator class represents the element
type. For example, here is the unique iteration scheme with elements of type character :

iterator_scheme(my_iterator: ITERATOR[CHARACTER]) is
local

i: INTEGER; element: CHARACTER;
do

from my_iterator.start; until my_iterator.is_off
loop

element := my_iterator.item;
-- Iteration body itself.
my_iterator.next;



abstract
ITERATOR[E]

ITERATOR_ON_DICTIONARY_ITEMS[E]

ITERATOR_ON_STRING ITERATOR_ON_DICTIONARY_KEYS[E]

ITERATOR_ON_COLLECTION[E]

B
inherits

from
 A

A

B

Figure 2. Inheritance hierarchy for the iterator abstract class.

end;
end;

As one can see in the previous example, the aggregate object to be traversed is not known
by the client. Furthermore, to force the client to use the iterator abstraction, there is no
possible access to this object in the interface of iterator (appendix A). Finally, once the
iterator has been created and returned, there is no way to know about the traversed object.

Implementing iterator relies on a simple inheritance mechanism (see figure 2). Class
iterator_on_string is the implementation of iterator to traverse a string, class
iterator_on_collection traverses a collection, class iterator_on_dictiona-

ry_items visits the items of a dictionary, etc. As we will show later, an iterator

facility can be provided for any other kind of aggregate object by creating a new subclass
of iterator.

As the iterator class is generic, the implementation of a concrete iterator using inheri-
tance is not always as straightforward as the implementation of iterator_on_collection

given in appendix B. For example, a look at the implementation of iterator_on_string

(appendix C) shows how inheritance of a generic derivation can be used. The Eiffel type
iterator_on_string which inherits iterator[character] is thus directly compatible
to the latter.

The implementation of iterators for a dictionary (appendices D and E) shows another
aspect of the power of the Eiffel genericity mechanism. The type of the dictionary attribute
is based both on a formal generic argument e and an actual type name hashable.

When traversing items, using an iterator_on_dictionary_items, the declaration
type of the dictionary attribute is dictionary[e,hashable], where e is the formal generic
argument corresponding to the item type and hashable is the abstract class for all kinds
of keys.

In the other case, when keys are traversed with iterator_on_dictionary_keys the
declaration type of the dictionary attribute is dictionary[any,e], where e is the formal
generic argument and any is the common abstract class for all kinds of items.

Moreover, aside abstraction, a great advantage of external iterators is that, since the
traversal algorithm is held in the iterator, it is very easy to switch from one traversal policy
to another for a given data structure just by using a different kind of iterator.

4 Integrating external iterators to existing libraries

As we have seen previously, iterators can be added in a completely external way with-
out any modification of the existing classes which are to be traversed. Because when
creating an iterator it is tedious to explicitly select the appropriate implementation (it-



erator_on_string, iterator_on_collection, etc.), some minor modifications are
worth considering.

Indeed, it is possible to move the burden of the creation of the correct iterator from
the client — the (application) developer — to the supplier — the library (developer) —
by simply adding an iterator creation function in the aggregate to be traversed. This is
easily done, by putting a generic version of this function in a common parent of traversable
classes and defining it more specifically in concrete descendants. As an example, here is this
function as it appears in the class collection:

get_new_iterator: ITERATOR_ON_COLLECTION[E] is
do

!!Result.make(Current);
end;

This way, only the library (implementor) has to worry about the type of the iterator on
a specific class; the client only calls the iterator creation function of the class she wants to
iterate on and gets a ready-to-use iterator which can be relied on without even knowing its
exact type.

Note that the get_new_iterator routine above returns a new iterator each time it is
called. As a consequence, since each iterator holds its own index (here item_index) on the
aggregate structure, it is possible to have several iterations at the same time on the same
data structure that operate in a completely independent and safe way.

A very important aspect of this technique is that it is fully compatible with legacy code
without extra modifications. There is thus absolutely no impact on existing code and
applications3, which makes this technique to increase the expressiveness and ease-of-use of
libraries quite attractive.

A second kind of modifications worth doing on an existing library pertains to optimiza-
tions. The iterator being created by the aggregate it traverses, it is possible to tie the two
classes more tightly, taking advantage of the knowledge of the aggregate specific implemen-
tation to optimize its iterator. We will highlight the usefulness of such an optimization on
an example involving several iterators used to traverse a same linked_list at the same
time.

First, let us consider how linked_list list was implemented in SmallEiffel, indepen-
dently of any iterator (see figure 3). Basically, a linked_list[e] is composed of cells (of
type link[e]) holding both a value (item) and a reference to the next cell (next). Finding an
element in the list is done by simply following the references from the first cell to the desired
one. To access the element of rank n, the average cost is a function of n. Of course, in case
there is an iteration (without iterator) on the n first elements of the list, simply doing this
would obviously be unreasonable, since one would have to restart from the first element of
the list for each access, the average cost being 1+2+3+...+n = n∗((n+1)/2) = (n2+n)/2.
Consequently, a caching mechanism was added to linked_list, in order to memorize the
last cell accessed. This way, when the next item is accessed, for example in an iteration on
the list, the only cost is dereferencing the next field of the current cell (and of course its
item attribute as well), which has a constant cost of 1. Thus the cost of an iteration on the
n first elements of a list would be only proportional to n, not n2.

This works very well when there is only one iteration on the list, but not when two or more
interleaved iterations are performed, because each iteration invalidates the cell memorized

3Unless the new name introduced for the iterator creation function is already used by another feature,
which, in Eiffel, results in a name clash.



LINK[E]

item

next

item #1

LINK[E]

item

next

item #2

LINK[E]

item

next

item #3

Void

LINKED_LIST[E]

first_link

...

mem_idx

mem_lnk

...

2

Figure 3. Implementation of a linked list with an access caching mechanism.

ITERATOR_ON_LINKED_LIST[E]

linked_list

current_link

ITERATOR_ON_LINKED_LIST[E]

linked_list

current_link

LINK[E]

item

next

item #2

LINK[E]

item

next

item #3

LINK[E]

item

next

item #5

LINK[E]

item

next

item #4

Figure 4. Duplicating the linked list access cache into each iterator objet.

at the previous one. In this case, it would be very impractical to add several caches in the
list itself, because their number is not known in advance. It is however much neater and
much more efficient to perform these interleaved iterations by using several iterators that
can be easily optimized.

Indeed, the caching mechanism can be added to the iterator itself to directly “point to”
the last cell accessed in the list (see figure 4). This way, each iterator can have its own
private cache and any number of iterations can be performed independently on the list
without hampering each others, thus allowing a much better scalability. In this case, the
iteration is conceptually performed “inside” the iterator, instead of being performed in the
linked_list. Appendix F shows the code for the iterator_on_linked_list and its
internal cache, attribute current_link, used to reference the last cell accessed. Note that,
unlike the previous iterator examples, the cache held by iterator_on_linked_list is
not of type integer, since it does not keep track of the index of the last element accessed.
It is a link[e], that is directly the internal representation of a cell in a linked_list.

This requires another slight change in the aggregate class, since it now must expose part
of its internal representation to the iterator. Thanks to the very flexible and powerful
export rules of the Eiffel language, this can be easily and safely done. The code of class
linked_list must be changed from:

feature {LINKED_LIST}
first_link: LINK[E]; -- Void when empty or gives access to the first element.

to the following:

feature {LINKED_LIST,ITERATOR_ON_LINKED_LIST}
first_link: LINK[E]; -- Void when empty or gives access to the first element.

The selective export mechanism of Eiffel made it possible not to make first_link public,
which would completely break encapsulation and information hiding rules, but to simply
export it to the only class that did need access to it, namely iterator_on_linked_list.



It thus appears easy to integrate iterators to an existing library, in an efficient way, and
without breaking legacy code.

5 Other iterator implementations

The current ISE EiffelBase library [Eng99], based on [Mey94b], offers many ways to access
data collections, among which are internalized iterators. Collections that can be iterated
on — in a nutshell, various kinds of lists — inherit from chain, which provides iteration
routines as well as an internalized cursor, the latter inherited from cursor_structure.
Since the iterator is internalized, it is not possible to have several iterations using this
mechanism at the same time on the same structure.

The EiffelGore [Gor96] library also uses internalized iterators, or cursors. Each traversable
collection inherits the necessary features from common predefined ancestors, such as list_-

linked and list_array. Here, again, since the iterator is internal, it is not possible to
have several iterations using this mechanism at the same time on the same structure.

The Gobo Eiffel Structure [Bez97] library strongly relies on iterators for traversal. The
ds_cursor class is more or less equivalent of our iterator class, but the traversed con-
tainer is supposed to be accessible via the container feature. All traversable collections
have to inherit ds_traversable, which basically adds cursor-awareness. Each descendant
of ds_traversable provides its own specialized descendant of ds_cursor. But although
these descendants offer iteration routines for the collection class they correspond to, there
seems to be no such routine at the ds_cursor level, the most abstract one. Consequently,
it seems impossible to iterate in an abstract way on collections, which in our opinion defeats
most of the purpose of having iterators in the first place.

The Pylon library [Arn97] uses a kind of external iterators which is similar to ours.
All traversable collections inherit, directly or not, from p_traversable, which basically
provides an equivalent to our get_new_iterator routine. Of course, specialized descendants
also provide specialized iterators wherever needed. Pylon’s are read-write iterators, that is
they encapsulate all the operations that can be done on the collection they iterate on. Ours,
on the contrary are for the time being read-only, that is limited to accessing the items.

Pylon’s iterators also try to address the problem of changes to the collection structure
(item removal, for example) while iterators are active on it. Two mechanisms are used
(protecting and locking) which affect either the whole structure or only the item to which
an iterator points. This system has thus made the decision to trade some efficiency for
some more safety. Conversely, our iterator library focuses on efficiency, especially because
we do not want iterators to have a negative impact on performance even when they are not
used. Another effect of these opposite choices is that creating new traversable classes and/or
iterators, and using them, is much simpler in our library than with Pylon iterators. Indeed,
with Pylon, one has to check the whole source code of a collection class for which an iterator
is developed, in order to be sure the protection mechanisms are correctly implemented. In
our system, changes are much more limited. This difference probably corresponds to the
fact the Pylon was designed with iterators from the beginning, whereas we added them to
an existing library.

Our collection class is inspired by its Smalltalk [GR83] counterpart, which leads us to
a similar iteration scheme. Of course, in Smalltalk, iterations are supported directly by the
language keyword syntax.



In Java [JGS96], the collection framework features powerful iterators, based on Enume-
rations and the inner class language mechanism. The latter allows a collection to provide
its own iterator without exposing its representation.

6 Conclusion

We have shown how iterators could be very easily added in a completely external way
to pre-existing libraries (section 3). Although the examples we used are taken from the
SmallEiffel library, the very same conclusions apply to other libraries written in Eiffel. Such
additions increase the level of abstraction on data collections in a significant way and can
be done with no modification of the existing libraries.

In order to have a safer and faster behavior, it is possible to integrate more closely the
iterators and the collections they work on (section 4). This can be easily and efficiently
done thanks to some mechanisms of the Eiffel language, especially the powerful selective
export.

As the iterator abstract class we presented is very simple, a developer who wants
to write portable code among various Eiffel libraries may consider using such a similar
abstraction. Furthermore, the same abstraction may be applied to some more broader
definitions of iteration, for example to traverse files.

Of course, some tradeoffs had to be found, especially considering the problem of modi-
fications on objects were iterations are taking place. We have chosen to focus on a simple
and efficient solution for iterators; other works have made different choices (section 5). As
a consequence, we think that finding a solution that would address both the efficiency and
the security problem is optimal ways still has to be found and represents future work.

A Source code of the abstract iterator class

deferred class ITERATOR[E]
-- The iterator pattern at work: this abstract class defines a
-- traversal interface for any kind of aggregate data structure.
feature

start is
-- Positions the iterator to the first object in the
-- aggregate to be traversed.

deferred end;
item: E is

-- Returns the object at the current position in the sequence.
require

not is_off
deferred end;

next is
-- Positions the iterator to the next object in the sequence.

require
not is_off

deferred end;
is_off: BOOLEAN is

-- Returns true when there are no more objects in the sequence.
deferred end;



end

B Implementation of iterator for collections

class ITERATOR_ON_COLLECTION[E] inherit ITERATOR[E];
creation make
feature {NONE}

collection: COLLECTION[E]; -- The collection to traverse.
item_index: INTEGER; -- Memorizes the current item position.

feature
make(c: COLLECTION[E]) is

require
c /= Void

do
collection := c;
item_index := collection.lower;

end;
start is

do item_index := collection.lower; end;
item: E is

do Result := collection.item(item_index); end;
next is

do item_index := item_index + 1; end;
is_off: BOOLEAN is

do Result := not collection.valid_index(item_index); end;
end

C Implementation of iterator for strings

class ITERATOR_ON_STRING inherit ITERATOR[CHARACTER];
creation make
feature {NONE}

string: STRING; -- The string to traverse.
item_index: INTEGER; -- Memorizes the current character position.

feature
make(s: STRING) is

require
s /= Void

do
string := s;
item_index := 1;

end;
start is

do item_index := 1; end;
item: CHARACTER is

do Result := string.item(item_index); end;
next is

do item_index := item_index + 1; end;
is_off: BOOLEAN is

do Result := item_index > string.count; end;
end



D Implementation of iterator for dictionary items.

class ITERATOR_ON_DICTIONARY_ITEMS[E] inherit ITERATOR[E];
creation make
feature {NONE}

dictionary: DICTIONARY[E,HASHABLE]; -- The dictionary to traverse.
item_index: INTEGER; -- Memorizes the current item position.

feature
make(d: DICTIONARY[E,HASHABLE]) is

require
d /= Void

do
dictionary := d;
item_index := 1;

end;
start is

do item_index := 1; end;
item: E is

do Result := dictionary.item(item_index); end;
next is

do item_index := item_index + 1; end;
is_off: BOOLEAN is

do Result := item_index > dictionary.count; end;
end

E Implementation of iterator for dictionary keys.

class ITERATOR_ON_DICTIONARY_KEYS[E] inherit ITERATOR[E];
creation make
feature {NONE}

dictionary: DICTIONARY[ANY,E]; -- The dictionary to traverse.
item_index: INTEGER; -- Memorizes the current key position.

feature
make(d: DICTIONARY[ANY,E]) is

require
d /= Void

do
dictionary := d;
item_index := 1;

end;
start is

do item_index := 1; end;
item: E is

do Result := dictionary.key(item_index); end;
next is

do item_index := item_index + 1; end;
is_off: BOOLEAN is

do Result := item_index > dictionary.count; end;
end



F Implementation of iterator for linked_lists.

class ITERATOR_ON_LINKED_LIST[E] inherit ITERATOR[E];
creation make
feature {NONE}

linked_list: LINKED_LIST[E]; -- The list to traverse.
current_link: LINK[E]; -- Memorize the current item position.

feature
make(ll: LINKED_LIST[E]) is

require
ll /= Void

do
linked_list := ll;
current_link := linked_list.first_link;

ensure
linked_list = ll

end;
start is

do current_link := linked_list.first_link; end;
is_off: BOOLEAN is

do Result := current_link = Void; end;
item: E is

do Result := current_link.item; end;
next is

do current_link := current_link.next; end;
end

References

[Arn97] Franck Arnaud. Pylon: a foundation library.
URL: http://www.altsoft.demon.co.uk/doc/pylon.html, 1997.

[Bez97] Eric Bezault. Gobo Eiffel Structure Library.
URL: http://gobosoft.com/eiffel/gobo/structure/index.html, 1997.

[CZ99] Dominique Colnet and Olivier Zendra. Optimizations of Eiffel programs: SmallEiffel, The GNU
Eiffel Compiler. In 29th conference on Technology of Object-Oriented Languages and Systems
(TOOLS Europe’99), pages 341–350. IEEE Computer Society, June 1999.

[Eng99] Interactive Software Engineering. EiffelBase library.
URL: http://eiffel.com/products/base/classes/base.html, 1999.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, 1994.

[Gor96] Jacob Gore. Object Structures : Building Object-Oriented Software Components With Eiffel.
Eiffel in Practice Series. Addison Wesley, 1996.

[GR83] A. Goldberg and D. Robson. Smalltalk-80, the Language and its Implementation. Addison
Wesley, 1983.

[JGS96] Bill Joy James Gosling and Guy Steele. The Java Language Specification. Addison Wesley, 1996.

[Mey94a] Bertrand Meyer. Eiffel, The Language. Prentice Hall, 1994.

[Mey94b] Bertrand Meyer. Reusable Software : The Base Object-Oriented Component Libraries. Prentice
Hall, August 1994.

[ZCC97] Olivier Zendra, Dominique Colnet, and Suzanne Collin. Efficient Dynamic Dispatch without Vir-
tual Function Tables. The SmallEiffel Compiler. In 12th Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA’97), volume 32,
pages 125–141, 1997.


