
Vol. 3, No. 4
Special issue: TOOLS USA 2003

Conformance of agents in the Eiffel language

Philippe Ribet, Cyril Adrian, Olivier Zendra and Dominique Colnet
LORIA (INRIA - CNRS - University Henri Poincaré) Vandœuvre-lès-Nancy Cedex
FRANCE

In Eiffel, the notion of agent makes it possible to describe and manipulate computation
parts (i.e. operations) like ordinary data. Operations may be partially described, may
be passed as ordinary data and may have their execution delayed. Agents are very con-
venient for many purposes, such as going through data structures and implementing
call-backs in graphical libraries.
Although they can be seen as normal objects, they convey specific issues, pertaining
to standard conformance rules for generic types. To get rid of existing problems, this
paper proposes an adaptation of conformance rules for agents that provides much
more flexibility while retaining all the benefits of a strong static typing system.

1 INTRODUCTION

Agents were introduced in the context of the Eiffel language in 1999, as an exten-
sion [DHM+99] for the previous definition of Eiffel [Mey92]. Although a number
of details were provided for their typing, we realized when implementing agents in
SmartEiffel1, The GNU Eiffel Compiler (http://SmartEiffel.loria.fr) in Sum-
mer 2001 that major issues remained. Being among the first to implement agents
in an Eiffel compiler and to actually use them (for iterators, for a graphical library
still under work, etc.) enabled us to gather significant experience in this area, and
made us find solutions to the uncovered issues.

This paper aims at presenting those solutions. It is organized as follows. First,
section 2 presents the concept of agents in Eiffel. Section 3 then explains the severe
issues that arise when using the usual conformance rules with agents. The solution
we suggest is detailed in section 4; its goal is to tackle these issues and allow agents
to smoothly merge with all other Eiffel concepts. Finally, section 5 concludes.

2 AGENTS: PRESENTATION

Overview

The agent mechanism [DHM+99, Mey00] gives the Eiffel object-oriented language
the ability to handle operations, or commands, as such, like in functional program-

1Previously named SmallEiffel.

Cite this article as follows: Philippe Ribet, Cyril Adrian, Olivier Zendra, Dominique Col-
net: ”Conformance of agents in the Eiffel language”, in Journal of Object Technol-
ogy, vol. 3, no. 4, April 2004, Special issue: TOOLS USA 2003, pages 125–143,
http://www.jot.fm/issues/issue 2004 04/article7

http://www.jot.fm/issues/issue_2004_04/article7

CONFORMANCE OF AGENTS IN THE EIFFEL LANGUAGE

ming languages.

Agents are a new type of objects that allow to store code to be executed and
data in an object, named the agent. In Eiffel, four types of agents exist: an abstract
(deferred) type ROUTINE, and three concrete types PROCEDURE, FUNCTION and
PREDICATE. The following figure shows their inheritance relationship:

ROUTINE

PROCEDURE FUNCTION

PREDICATE

Agents are a way of storing operations for later execution. They are objects.
As such, they can be stored, compared to Void, or passed around to other software
components. The operation stored in the agent may then be executed whenever
the component decides. The most common uses of agents comprise delayed calls,
multiple calls (on different values), lazy evaluation, and so on.

Using agents in Eiffel

Standard method calls are executed exactly “where they are written in the code”. An
agent, while having a syntax similar to a simple feature call, does not immediately
call the method. Instead, an object is created, to be stored and used later. Only
when it is used, will the agent trigger the feature call.

The created object has, like any Eiffel object, a well defined static type. The
agent type (be it ROUTINE or one of its heirs as shown above) may be used to
declare entities, such as attributes, feature parameters or a feature result.

For illustration, we use in this paper examples inspired from graphical user in-
terface (GUI) programming. As the following example shows, GUI usage widely
benefits from the power of the agent mechanism:

do
...

my_window.when_pointer_move(agent print_coordinates(?,?)) --(1)

...

end

126 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

2 AGENTS: PRESENTATION

print_coordinates(x, y: INTEGER) is
do

io.put_integer(x) ; io.put_character(’ ’)

io.put_integer(y) ; io.put_new_line

end

The expression starting with the agent keyword on line (1) creates a new ob-
ject, actually an agent object, instead of executing the print_coordinates method
immediately. Note the pair of question marks (?,?) which denote the fact that
the arguments of print_coordinates are not yet given. Still at line (1) this newly
created agent object is passed to the when_pointer_move method to be memo-
rized by the my_window object of class WINDOW. Thus the operation saved by the
my_window object may be executed many times, with different arguments (e.g. each
time the mouse pointer moves inside the WINDOW).

The WINDOW class is in charge of the agent memorization as well as the agent
execution when the move event occurs. The following extract of the WINDOW class
shows how to declare an attribute to store the agent (2) and then the usage of the
call feature (3) to launch the execution:

delayed_action: PROCEDURE[ANY, TUPLE[INTEGER, INTEGER]] -- (2)

when_pointer_move(action: like delayed_action) is
do

delayed_action := action

end

pointer_move_dispatch(x, y: INTEGER) is
do

delayed_action.call([x, y]) -- (3)

end

The method when pointer move saves the agent, while the method pointer move-

dispatch executes it using the mouse pointer coordinates as arguments.

It is interesting to focus on the PROCEDURE[ANY, TUPLE[INTEGER, INTEGER]]

type. It is the type of an agent that stores a procedure. This procedure may
belong to (be defined in) any class. Such an agent has two open arguments of type
INTEGER. An open argument is an argument whose value is unknown when the
agent is created, but is provided at call time (when the agent is executed). Con-
versely, an agent may also have closed arguments, that is arguments known when
the agent is created. Hence, the agent object does not only refer to a routine (as a
mere function pointer would in other languages), but also contains additional infor-
mation that becomes available as arguments of the executed routine. For example,
the previous code can be changed this way:
VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 127

CONFORMANCE OF AGENTS IN THE EIFFEL LANGUAGE

do
...

my_window.when_pointer_move(

agent position_message("Pointer moved to ", ?, ?))

my_window.when_left_click(

agent position_message("Left click at ", ?, ?))

...

end

position_message(text: STRING; x, y: INTEGER) is
do

io.put_string(text) ; io.put_integer(x)

io.put_character(’ ’) ; io.put_integer(y)

io.put_new_line

end

Open arguments are symbolized by question marks, while closed arguments are
directly stored in the agent object. This powerful system makes it possible to have
delayed calls with values specific to each call (open arguments) and values specific
to each agent but common to all executions of this agent (closed arguments). This
mechanism is secure because each argument type is checked at compile time.

In the above example, the pointer_move_dispatch procedure will thus use the
same call on all agents, even though some executed procedures require two formal
arguments and others need three.

Another capability that makes agents very useful is that any existing method can
be turned into an agent, without any change to its code. We could use for example
io.put_string:

do
...

my_window.when_close(agent io.put_string("Bye bye%N"))

...

end

Common agent use cases

The first goal of agents is to delay calls. Here is one example of such a use: let’s
imagine you have a dog, which is able to do what you tell it do do at noon. You
may tell it to eat, to walk, to sleep, to get the newspaper...

Below is the code preparing the action the dog will do at lunch time (we ask the
dog to eat some food then). Follows an extract of the DOG class showing what it
does with such an instruction (see the do lunch action).
128 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

2 AGENTS: PRESENTATION

do
...

my_dog.at_lunch(agent my_dog.eat(some_food))

...

end

class DOG -- Extract

at_lunch_action: PROCEDURE[ANY, TUPLE]

at_lunch(action: PROCEDURE[ANY, TUPLE]) is
do

at_lunch_action := action

end

eat(food: FOOD) is
do

...

end

do_lunch is
do

at_lunch_action.call([])

end

end -- class DOG

Another common use of agents is repetitive action on a collection. For example,
ARRAY features the do_all method whose code is:

class ARRAY[E] -- Extract

do_all(action: ROUTINE[ANY,TUPLE[E]]) is
-- Apply ‘action’ to every item of ‘Current’.

local
i: INTEGER

do
from i := lower until i > upper

loop
action.call([item(i)]) -- (4)

i := i + 1

end
end

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 129

CONFORMANCE OF AGENTS IN THE EIFFEL LANGUAGE

The following example shows the basic use of do_all:

zoo: ARRAY[ANIMAL]

foo is
do

...

zoo.do_all(agent print_name(?)) -- (5)

...

end

print_name(item: ANIMAL) is
do

io.put_string(item.name) ; io.put_new_line -- (6)

end

In the above example, we display the name of each animal in the zoo. In-
deed when zoo, an ARRAY [ANIMAL], is asked to do_all on line (5), it calls the
print_name agent once for each item it contains (line (4)). Thus, each ANIMAL in
zoo is passed as an argument to print name, which then prints its name (line (6)).

Agents also allow the receiver of the call (the target) to be an open argument.
In this case, the open target is denoted by its type, like in the following adaptation
of the previous example:

do
...

zoo.do_all(agent {ANIMAL}.do_lunch)
...

end

Note that in this case, do_all is still used. Line (4) executes do_lunch using
all the item(i) as successive targets, hence triggering do lunch on every ANIMAL.

Agents are a way to pass code as an argument, but they may also be used for
partial execution. In method calls, all parameters are evaluated before the call. If an
actual parameter is agent object.method(arg), then it results in an agent object
creation and method is not called on target object. Note that arg is evaluated when
it is stored in the agent object. This agent may be executed later when requested.
The following example shows partial code evaluation on an academic example:

do
...

ifthenelse(age > 12,

agent allow_access(current_discount),

130 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

3 STANDARD EIFFEL CONFORMANCE RULES

agent deny_access)

...

end

ifthenelse(cond: BOOLEAN; action1, action2: PROCEDURE[ANY, TUPLE]) is
do

if cond then
action1.call([])

else
action2.call([])

end
end

All examples shown so far use PROCEDUREs; using agents of type FUNCTION

is very similar. An agent of type FUNCTION requires one more generic parameter
for the function result type. For example, with the following function definition in
class FOO :

gt(item, value: INTEGER): BOOLEAN is
do

Result := item > value

end

Various agent types may be used, as the following table shows:

Written Agent Corresponding Agent Type

agent gt(?, ?) FUNCTION[FOO, TUPLE[INTEGER, INTEGER], BOOLEAN]

agent gt(?, 3) FUNCTION[FOO, TUPLE[INTEGER], BOOLEAN]

agent gt(1, ?) FUNCTION[FOO, TUPLE[INTEGER], BOOLEAN]

agent gt(x, y) FUNCTION[FOO, TUPLE, BOOLEAN]

Note that the PREDICATE type is just a shortcut for a FUNCTION with a
BOOLEAN result type: PREDICATE[A, B] is equivalent to FUNCTION [A, B, BOOLEAN].

3 STANDARD EIFFEL CONFORMANCE RULES

Conformance usage

The Eiffel conformance rules are involved in assignments, be they direct or indirect.

For example, let’s consider the following code:

a: A

b: B

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 131

CONFORMANCE OF AGENTS IN THE EIFFEL LANGUAGE

...

foo(c: C; d: D) is
do

...

end

With these declarations, a direct assignment a := b is valid only if type B con-
forms to type A, while an indirect assignment foo(a, b) is valid only if type A

conforms to type C and type B conforms to type D. Note that this is an indirect
assignment because the call foo(a, b) assigns effective parameters to formal pa-
rameters: in order to initialize the formal parameters, c := a; d := b is performed
when entering the foo routine.

The conformance rule in assignments is the base of the typing system. The goal
is to be sure that an object has a dynamic type which conforms to the static type of
the entity used to access the object.

The assignment attempt construct offers the possibility to write an assignment
that would be invalid according to the previous rule based on static types. a ?= b

is an assignment attempt. Such an instruction succeeds only if the dynamic type
of the source b of the assignment conforms to the static type of the target a. The
conformance rule is thus satisfied.

The next parts define the precise conformance rules in Eiffel.

Conformance with basic types

Very briefly, the main conformance rules are:

• any type conforms to itself,

• an expanded type conforms to the relative reference type,

• if types A and B are not expanded, and class B directly inherits from class A,
then type B conforms to type A,

• the ‘conforms to’ property is transitive.

More details can be found in the Eiffel reference manual [Mey92].

Conformance with generic types

A type G[F1, F2, ..., Fn] conforms to a type G[E1, E2, ..., En] only if ∀i ∈ [1..n] F i

conforms to Ei.

132 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

3 STANDARD EIFFEL CONFORMANCE RULES

Conformance with TUPLE types

A type TUPLE[F1, F2, ..., Fp] conforms to a type TUPLE[E1, E2, ..., En] only if
n ≤ p and ∀i ∈ [1..n] F i conforms to Ei.

Conformance with ROUTINE types

The ROUTINE types are generic types with more semantic. As ROUTINE types
do not have their own conformance rules one may think that the generic types rules
apply. We will hold true this assumption in this chapter, and show that we can
make dogs eat tomatoes.

The ROUTINE type is a generic type with two formal type parameters: ROU-
TINE[BASE, OPEN –> TUPLE]. According to the conformance rule for generic
types, a type ROUTINE[B1, O1] conforms to a type ROUTINE[B2, O2] only if B1

conforms to B2 and if O1 conforms to O2.

As mentioned in section 2, page 125, the PROCEDURE type inherits from ROU-

TINE, and has the same formal type parameters: PROCEDURE[BASE, OPEN –>
TUPLE]. Its conformance rule is thus the same as for ROUTINE.

The FUNCTION type is a generic type with three formal type parameters:
FUNCTION [BASE, OPEN –> TUPLE, RESULT TYPE]. According to the confor-
mance rule for generic types, a type FUNCTION [B1, O1, R1] conforms to a type
FUNCTION [B2, O2, R2] only if B1 conforms to B2, O1 conforms to O2 and if R1

conforms to R2.

PREDICATE[B, O] type being just a shortcut for FUNCTION [B, O, BOOLEAN],
and it has the same conformance rules as ROUTINE.

The next section shows these conformances within the context of various exam-
ples.

Applying conformance rules to examples: issues arise

Having precisely recalled the rules of conformance for the different types, we now
apply these rules to an number of examples, in order to show that issues arise.

Let’s start with the following code:

lunch_action: PROCEDURE[ANY, TUPLE[FOOD]] -- (7)

do
...

lunch_action := agent my_dog.eat(?) -- (8)

...

lunch_action.call([tomatoes]) -- (9)

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 133

CONFORMANCE OF AGENTS IN THE EIFFEL LANGUAGE

...

end

class DOG -- Extract

eat(meat: MEAT) is -- (10)

do
...

end

If we consider line (8), the type of lunch action is PROCEDURE[ANY, TU-

PLE[FOOD]] and the type of agent my dog.eat(?) is PROCEDURE[DOG, TU-

PLE[MEAT]]. As DOG conforms to ANY and TUPLE[MEAT] conforms to TU-

PLE[FOOD] (because MEAT conforms to FOOD, being a subtype of it), the con-
formance rules of generic types implies that PROCEDURE[DOG, TUPLE[MEAT]]
conforms to PROCEDURE[ANY, TUPLE[FOOD]]. Thus, according to the standard
conformance rules, the assignment on line (8) is a valid one.

Using the same rules, line (9) is valid. The definition of call is call(o:

OPEN); in this example, OPEN corresponds to TUPLE[FOOD], because of line (7).
[tomatoes] is thus a valid argument.

As a consequence, the call on line (9) executes the eat method of class DOG

(line (10)) with tomatoes as effective argument which does not conform to the
formal argument type MEAT. This odd situation results in a very dangerous state,
because the dynamic type of meat does not conform to its static type; this violates
the conformance rule stated earlier. It seems reasonable to consider this a major
problem.

Let us now formally demonstrate that the rule leads to conformance oddities.
Our next example considers an agent as a delayed call. If an agent is executed where
it is created (without any instruction between the agent creation instruction and the
agent execution), then the agent call and its execution should have the same effect
as a direct call and the properties should be similar.

Let’s consider the following class definition:

class T -- Extract

a: A

b: B -- with B conforming to A

f(a1: A) is do ... end
g(b1: B) is do ... end

fa: PROCEDURE[T, TUPLE[A]] -- same type as ‘agent f(?)’

gb: PROCEDURE[T, TUPLE[B]] -- (11) same type as ‘agent g(?)’

134 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

3 STANDARD EIFFEL CONFORMANCE RULES

With the previous definition in mind, we now examine several calling sequences
variants that should be equivalent:

f(b)

m
(agent f).call([b])

m
gb := agent f -- (12)

gb.call([b]) -- (13)

Writing the (12) assignment is appealing. Indeed, the type of gb, found on
line (11), guarantees the method will be called with a parameter conforming to B

(on line (13)). And the f method is precisely one that accepts such parameters
(since it accepts A, to which B conforms). Thus, (13) should be valid and work
as expected. However, the assignment on line (12) is forbidden by the current
conformance rules in the language, because PROCEDURE[T, TUPLE[A]] does not
conform to PROCEDURE[T, TUPLE[B]], since A does not conform to B.

This example makes it clear that the typing system may prevent writing perfectly
valid calls, which is not satisfactory.

Let’s now consider the following normally equivalent calling sequences:

g(a) -- (14) invalid

m
(agent g).call([a])

m
fa := agent g -- (15)

fa.call([a]) -- (16)

Line (14) is invalid, since method g requires a parameter of type B, not an A.

Conversely, line (15) is valid, because agent g is of type PROCEDURE[T, TU-

PLE[B]], which conforms to PROCEDURE[T, TUPLE[A]], the type of fa. Line (16)

is also valid, since the provided parameter type is the one expected, A. But the result
of running lines (15) and (16) is to execute the g method with a as parameter,
which would be normally invalid in a direct call and may not reasonably be expected
to succeed.

Thus, we can conclude that the normal conformance rules applied to routines
makes it possible to defeat the typing system and perform invalid calls, which is an
issue.

In the previous examples, we studied cases for the conformance of the parameters
of the TUPLE type. But conformance with TUPLE types encompasses another

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 135

CONFORMANCE OF AGENTS IN THE EIFFEL LANGUAGE

aspect: the number of parameters, or size of the tuple. The next examples pertain
to this second aspect.

The code of the following example uses the one for the WINDOW class provided
on page 127:

my_window.when_pointer_move(agent print_all) -- (17)

my_window.when_pointer_move(agent print_x) -- (18)

my_window.when_pointer_move(agent io.put_string("move%N")) -- (19)

print_x(x: INTEGER) is
do

io.put_integer(x) ; io.put_new_line

end

print_all(x, y: INTEGER; t: TIME) is -- (20)

do
io.put_integer(x) ; io.put_character(’ ’)

io.put_integer(y) ; io.put_character(’ ’)

io.put_string(t.to_string) ; io.put_new_line

end

On line (17), the type of agent print all2 is PROCEDURE[T, TUPLE[INTE-

GER, INTEGER, TIME]]. Since the argument type for when pointer move is PRO-

CEDURE[ANY, TUPLE[INTEGER, INTEGER]] (see line (2) page 127), the indirect
assignment on line (17) is allowed according to the previous conformance rules.

However problems are bound to arise when the agent is triggered and the call is
executed. Indeed, the call on line (3) page 127 corresponds to action.call([x,

y]) but the actually executed method print all requires one more argument (line (20)).
That is a dramatic error that is undetected by the type system, which is likely to
cause trouble because this method needs information it will never get.

On line (18), the type of agent print x is PROCEDURE[T, TUPLE[INTEGER]].
However, the argument type for when pointer move is PROCEDURE[ANY, TU-

PLE[INTEGER, INTEGER]] (line (2) page 127). The indirect assignment in line (18)
is thus forbidden according to the previous conformance rules for TUPLEs seen on
page 133. It may seem nonetheless acceptable, because more parameters are pro-
vided than required: the print x method, when executed, will only use the first
parameter.

Line (19) presents a case similar to that of line (18). This call is forbidden, but
may be considered useful, with the executed method ignoring optional information
it does not need.

2 all arguments are open, is is a shortcut for agent print all(?, ?, ?)

136 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

4 NEW CONFORMANCE RULES

Conclusion

The above examples clearly show that the conformance rules presented in this section
are not satisfactory. Some of these examples just point at some code that could be
accepted but is not validated, thus proving the type system too cautious. This is
safe, although not desirable for the sake of expressiveness.

However, a number of examples evidenced true issues, where incorrect code that
is bound to fail is accepted by the type system. This is a major problem, that led
us to design new, better rules, which are detailed in the next section.

4 NEW CONFORMANCE RULES

We demonstrated that not having rules for the special case of ROUTINE types (thus
using the default “generic type” rules), was bound to raise many problems. In this
chapter we will now present specific rules for the ROUTINE types and show how
they solve those problems.

New rules definition

Our new conformance rules are specific to agents.

ROUTINE[B1, O1] conforms to ROUTINE[B2, O2] if the following two conditions
hold:

• BaseRule: B1 conforms to B2

• OpenRule: O2 conforms to O1 (note the reversed conformance rule)

FUNCTION [B1, O1, R1] conforms to FUNCTION [B2, O2, R2] if the following three
conditions hold:

• BaseRule: B1 conforms to B2

• OpenRule: O2 conforms to O1 (note the reversed conformance rule)
• ResultRule: R1 conforms to R2

Conformance for PROCEDURE[B1, O1] and PREDICATE[B1, O1] need the condi-
tions BaseRule and OpenRule as for the ROUTINE type.

As indicated, our new conformance rules between O1 and O2 are the reverse of
what they were in the normal ones (the conformance for generic types), erroneous
conformance rules presented in section 3. All the other conformance rules (for basic
types, generic types and TUPLE types) are unchanged and remain as they were in
section 3.

Note that the previous rules define conformance rules, this has nothing to do
with covariance or contravariance.

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 137

CONFORMANCE OF AGENTS IN THE EIFFEL LANGUAGE

As a summary, a simple way to see and use these rules is to consider that when
some method requires a formal argument of type ROUTINE[BASE, OPEN], the agent
which will be provided as effective parameter is bound to be executed with arguments
conforming to OPEN. So, providing a method able to handle such arguments is all
that is necessary.

Applying new conformance to examples: issues are solved

This section details how our new conformance rules impact all the examples pre-
sented in section 3 and shows how they solve the issues that existed with the normal
rules.

Let’s start with the same example as the one presented on page 133:

lunch_action: PROCEDURE[ANY, TUPLE[FOOD]]

do
...

lunch_action := agent my_dog.eat(?) -- (21)

...

lunch_action.call([tomatoes]) -- (22)

...

end

class DOG -- Extract

eat(meat: MEAT) is
do

...

end

Line (21) is not valid anymore, because the type of agent my dog.eat(?) is
PROCEDURE[DOG, TUPLE[MEAT]] and does not conform to the type of lunch-
action, which is PROCEDURE[ANY, TUPLE[FOOD]], according to our new re-
versed conformance rule OpenRule.

This code is thus now statically rejected. Line (22) is still type-valid, but since
line (21) is not, lunch action may not be an eat method that requires a MEAT as
argument. Thus, thanks to our new conformance rules, the invalid code execution
of page 133 is not possible anymore.

The next example considers an agent as a delayed call, and is based on rewriting
code in different, but equivalent, ways. It was first shown on page 134.

class T -- Extract

138 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

4 NEW CONFORMANCE RULES

a: A

b: B -- with B conforming to A

f(a1: A) is do ... end
g(b1: B) is do ... end

fa: PROCEDURE[T, TUPLE[A]] -- same type as ‘agent f(?)’

gb: PROCEDURE[T, TUPLE[B]] -- same type as ‘agent b(?)’

With the above definition for T, let’s consider the same code variants as before:

f(b)

m
(agent f).call([b])

m
gb := agent f -- (23)

gb.call([b]) -- (24)

Now, line (23) is allowed by our new conformance rules. Indeed, now, PROCE-

DURE[T, TUPLE[A]] conforms to PROCEDURE[T, TUPLE[B]], because OpenRule

requires B to conform to A (which is trivially true). Line (24) will execute the f

method with b as an argument, which is valid because f needs an argument con-
forming to A. This safe code is thus accepted now, which increases expressiveness.

Our third example, first shown on page 135, consists of the following normally
equivalent code variants:

g(a) -- invalid

m
(agent g).call([a])

m
fa := agent g -- (25) now invalid

fa.call([a]) -- (26)

Now, line (25) is not valid anymore, because OpenRule states that for PRO-

CEDURE[T, TUPLE[B]] (the type of agent g) to conform to PROCEDURE[T, TU-

PLE[A]] (the type of fa), A must conform to B, which is of course not true.

This code is thus now correctly rejected. This is a safe situation, unlike that in
section 3 because as explained there line (26) is valid and would execute method g

with a as an effective argument while expecting a formal argument of type B. Our
new rules thus prevent the bogus assignment of line (25) that leads to an invalid
situation in line (26).

Our last series of examples, like in section 3, pertains to the conformance of
TUPLE types with different number of parameters.

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 139

CONFORMANCE OF AGENTS IN THE EIFFEL LANGUAGE

They rely on the code for the WINDOW class provided on page 127:

my_window.when_pointer_move(agent print_all) -- (27)

my_window.when_pointer_move(agent print_x) -- (28)

my_window.when_pointer_move(agent io.put_string("move%N")) -- (29)

print_x(x: INTEGER) is
do

io.put_integer(x) ; io.put_new_line

end

print_all(x, y: INTEGER; t: TIME) is
do

io.put_integer(x) ; io.put_character(’ ’)

io.put_integer(y) ; io.put_character(’ ’)

io.put_string(t.to_string) ; io.put_new_line

end

On line (27), the type of agent print all is PROCEDURE[T, TUPLE[INTE-

GER, INTEGER, TIME]]. Since the argument type for when pointer move is PRO-

CEDURE[ANY, TUPLE[INTEGER, INTEGER]] (see line (2) page 127), the indirect
assignment on line (27) is not allowed anymore according to our new conformance
rules. Indeed, OpenRule requires that TUPLE[INTEGER, INTEGER]] be conform
to TUPLE[INTEGER, INTEGER, TIME]], which is not the case according to the
conformance rules between TUPLE types. So this line is now statically rejected,
which prevents reaching the problem previously explained on page 136.

On line (28), the type of agent print x is PROCEDURE[T, TUPLE[INTEGER]],
and the argument type for when pointer move is PROCEDURE[ANY, TUPLE[INTE-

GER, INTEGER]] (line (2) page 127). The indirect assignment on line (28) is now
valid according to our new conformance rules that require TUPLE[INTEGER, IN-

TEGER]] to conform to TUPLE[INTEGER], which is the case. When executed, the
print x method just ignores the extra available data. This gives additional expres-
siveness, compared to the normal rules, with total safety.

Line (29) is a case similar to that of line (28). This call is now valid as well,
and safe. The executed method simply ignores all data, since it does not need any.

This capability to ignore some arguments might seem dangerous if it were allowed
with immediate calls, but we think it is quite useful in the agent case for at least
three reasons.

First, when working with a graphical system, it is easy to trace events as shown
in our examples by just printing a message and ignoring all other data provided with
this event. This is a very simple but convenient way to debug event-based systems.

Second, some data may be irrelevant for the action to execute. As an example,
the method to execute when the user clicks on some button is in most cases inde-

140 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

5 CONCLUSION

pendent from the mouse pointer coordinates when the click is performed. Our new
rules allow to reuse existing methods not specific to such an event coming from the
graphical system and which did not care about the mouse pointer. We think that
such cases are common in practice.

Finally, the ability to take into account only some of the arguments helps soft-
ware evolutions. For example, a graphical system may evolve by providing more
informations with the ‘button clicked’ event, say, by adding a time-stamp and a
keyboard status. These extra pieces of information shall simply be ignored by any
existing code, instead of breaking it all.

Conclusion

All these examples, that revealed problems with the normal conformance rules for
agents in section 3, now work as expected with our new conformance rules.

Code that was needlessly rejected with the normal rules is now accepted, thus
giving extra expressiveness to agents and their users, while maintaining security
both at compile time (thanks to the type system) and at execution time.

This is an nice gain, but not the main one. Indeed, much more important is
the fact that our new rules catch, at compile time, fatal errors that were completely
undetected with the normal conformance rules. Hence erroneous code that was
accepted, compiled and crashed at execution is now rejected. Our rules are thus
safe, while the old ones were not.

5 CONCLUSION

In this paper, we showed that using generic types conformance rules with ROUTINE

types was flawed. We provided examples to demonstrate that these rules could lead
acceptable and safe code to be unnecessarily rejected, while erroneous code that had
no way to work properly would be accepted.

To solve these issues, we added new specific conformance rules that allow agent
assignment to become safe and accept more valid code as well. These specific rules
do not change the typing of agent per se, but simply conformance on the second
generic argument (relative to open arguments).

At first sight, these rules may seem a bit unintuitive to Eiffel developers. But
they provide not only safety, but also extra expressiveness in a very natural and
useable way, thus making it possible to develop with agents safely and easily.

To make the agents conformance rule easy for the user, he has to consider that
if some method needs argument whose type is ROUTINE[BASE, OPEN], then the
agent he will give as parameter is sure to be called with arguments conforming to
OPEN, and then he needs to give an agent able to handle such arguments.

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 141

CONFORMANCE OF AGENTS IN THE EIFFEL LANGUAGE

To summarize, the main arguments to adopt these specific conformance rules are:

• agents are not to be a way to defeat the typing system,

• conformance rules are maintained when the routine is executed,

• newly valid cases are useful and will be executed easily and safely,

• newly forbidden cases must be so, since they are error cases,

• if we consider agents as delayed calls, our new rules make it possible to de-
lay any call that is valid as an immediate call; valid delayed calls using all
parameters are also valid as immediate calls.

Thanks to the TUPLE type conformance rule and new ROUTINE conformance
rule, delayed calls have one more capability than immediate calls: they may ignore
some arguments. As explained, this property helps event debugging, software reuse
and software evolutivity.

REFERENCES

[DHM+99] Paul Dubois, Mark Howard, Bertrand Meyer, Michael Schweitzer, and
Emmanuel Stapf. From calls to agents. Journal of Object-Oriented
Programming (JOOP), 12(6), June 1999.

[Mey92] Bertrand Meyer. Eiffel, The Language. Prentice Hall, Englewood Cliffs,
1992. ISBN 0-13-247925-7.

[Mey00] Bertrand Meyer. Agents, iteration and introspection. Chapter 25 of
ongoing work for the new Eiffel, The Language manual, May 2000.
http://archive.eiffel.com/doc/manuals/language/agent/agent.pdf.

ABOUT THE AUTHORS

Philippe Ribet is software engineer in Toulouse, France. He works on graphic
library design, using Eiffel’s language power and works on SmartEiffel project. He
can be reached at p.ribet@worldonline.fr.

Cyril Adrian is software engineer in Montbéliard, France. He joined the Smart-
Eiffel team in summer 2002, working on the project in his free time. He developed
a new installer, added the Acyclic Visitor design pattern, and worked on the first
implementation of SCOOP. He can be reached at cyril.adrian@laposte.net. See also
http://www.chez.com/cadrian/.

142 JOURNAL OF OBJECT TECHNOLOGY VOL 3, NO. 4

mailto:p.ribet@worldonline.fr
mailto:cyril.adrian@laposte.net
http://www.chez.com/cadrian/

5 CONCLUSION

Olivier Zendra is a Researcher at INRIA-Lorraine / LORIA in Nancy, France. He
works on the definition, compilation and optimization of object-oriented languages
and on the SmartEiffel project. He can be reached at Olivier.Zendra@loria.fr. See
also http://www.loria.fr/˜zendra.

Dominique Colnet is Professor at the University of Nancy2. He is the original
author of the GNU Eiffel compiler and the leader of the SmartEiffel team. He can
be reached at Dominique.Colnet@loria.fr. See also http://www.loria.fr/˜colnet.

VOL 3, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 143

mailto:Olivier.Zendra@loria.fr
http://www.loria.fr/~{}zendra
mailto:Dominique.Colnet@loria.fr
http://www.loria.fr/~{}colnet

